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We study the dynamics in the neighborhood of an invariant torus of a nearly 
integrable system. We provide an upper bound to the diffusion speed, which 
turns out to be of superexponentially small size exp[-exp(I/L0)], 0 being the 
distance from the invariant torus. We also discuss the connection of this result 
with the existence of many invariant tori close to the considered one. 
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1. I N T R O D U C T I O N  A N D  RESULTS 

We consider  the problem of Arnold  diffusion in nearly integrable 
Hami l ton ian  systems, with the aim of p roduc ing  bounds  on the diffusion 
speed in the spirit  of Nekhoroshev ' s  theory. We concentrate  our  a t tent ion 
on the ne ighborhood  of the invariant  tori,  the existence of which is guaran-  
teed by K A M  theory. We show that  a clever use of the known results of 
both  K A M  theory and Nekhoroshev ' s  theory leads to s t rong consequences, 
a l though of local character.  

The key remark  is that  in the ne ighborhood  of an invariant  K A M  
torus it is na tura l  to in t roduce the distance from the torus as a new pertur-  
ba t ion  parameter .  Thanks  to this change of perspective we can apply  a 
Birkhoff procedure,  thus reducing the pe r tu rba t ion  to an exponent ia l ly  
small  size in l/Q, Q being the distance from the invariant  torus. The new 
act ion variables in t roduced by the Birkhoff normal iza t ion  are good  
adiabat ic  invari'ants, since they remove most  of the quasiper iodic  oscilla- 
t ion of the old act ion variables due to per turba t ion ,  namely,  the so-called 
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deformation. At this point we change again our perspective, and investigate 
the dynamics with the global approach of Arnold on the one hand, and of 
Nekhoroshev on the other hand. All the results follow from a direct 
application of known theorems. In particular, a relevant consequence 
is that the speed of the Arnold diffusion (if any) turns out to be of 
superexponentially small size e x p [ e x p ( - I / Q ) ] .  This is our main contri- 
bution. 

In view of this result, we can consider an invariant KAM torus as the 
head of a structure which dominates the dynamics in its neighborhood. It 
appears that such a structure has a typical radius which depends on the 
size of the perturbation and decreases to zero as the perturbation increases 
toward the critical size corresponding to the destruction of the torus. The 
neighborhood of the torus turns out to contain many other invariant tori, 
constituting a set the relative volume of which tends to 1 when approach- 
ing the head torus. More precisely, the relative volume of the complement 
of the set of invariant tori turns out to be as small as exp ( - l /Q) .  This 
represents a local improvement with respect to the estimates more or less 
explicitly contained in many previous statements: see, for instance, ref. 13. 
The new aspect that we point out is that the dynamics is strongly affected 
by the existence of such a structure, inasmuch as the chaotic diffusion of 
orbits starting in the gaps between tori is thus forced to require a very 
long time. According to the known Nekhoroshev estimates, such a time is 
exponentially large with the inverse of the perturbation. In our case, as we 
already remarked, the perturbation is exponentially small in 1/0. This 
determines the superexponential estimate for the diffusion time. 

The picture resulting from the discussion above contrasts with the 
quite widespread opinion, especially among physicists, that the existence 
of invariant tori in systems with more than two degrees of freedom is not 
so relevant (see, for instance, ref. 10). Such an opinion is supported by 
the fact that the tori do not isolate separated regions in phase space, thus 
allowing for the so-called Arnold diffusion. More recently, some authors 
have pointed out that KAM tori are very sticky, by applying locally the 
Nekhoroshev theory to the neighborhood of an invariant torus: see, for 
instance, ref. 16. Their approach is actually equivalent to the application of 
the Birkhoff normalization procedure using the distance from the invariant 
torus as a perturbation parameter. However, we go beyond this level. We 
show in fact that although the KAM tori are not isolating, they form 
nevertheless a kind of impenetrable structure that the orbits cannot escape 
(nor enter, of course) for an exceedingly long time, very large even with 
respect to the known Nekhoroshev estimates. Thus, the behavior of the 
system in the region containing invariant KAM tori can be said to be 
effectively integrable. 
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We come now to a formal statement of our result. We consider a 
canonical system of differential equations with a Hamiltonian of the form 

H(p, q, ~)= Ho(p) + eHI(p, q, e) (1) 

where p e f f c R " ,  Cr being an open set, q s T "  are the action-angle 
variables, and e is a small parameter. The Hamiltonian is assumed to be a 
real analytic function of all its variables. The frequencies of the unperturbed 
system will be denoted by co(p)= OHo/Op, and the Hessian matrix of He 
with respect to p will be denoted by Cr Also, we shall denote by I"1 a 
norm on functions over their domain of analyticity, for instance, the usual 
supremum norm, and by li'll a norm for vectors in R" or C", for instance, 
the Euclidean norm. 

We pick up a point p* such that the corresponding frequency 
co* := co(p*) satisfies the Diophantine condition 

[k-co*l/>~lkL -~ forall  kEZ", k~O (2) 

for some ~,>0 and r > n -  1; here, we define Ikl = Ikll + ""  + [k,I. We also 
assume that the Hamiltonian admits an analytic bounded extension to a 
domain 

D,~(p*) -- B~(p*) x T" (3) 

for some positive 6. Here, B,s(p*) is the open ball of radius 6 and center 
p* in C ' ,  and T ~ = { q e C " : l I m ( q ) ] < 6 } .  By the analyticity of the 
Hamiltonian, such a 6 exists. With this setting we can state our theorem. 

T h e o r e m .  Consider the Hamiltonian (1) in the domain Da(p*) 
defined by (3), with co*-co(p*)  satisfying (2), and assume that the follow- 
ing conditions hold with positive constants ~, d <  1 and m: 

(a) lHl[ < e  in Da(p*). 
(b) Cg(p) satisfies the nondegeneracy condition d iivll<ll~v[[< 

d- '  [ivii. 
(c) The matrix C=Cs *) satisfies ICv.vl>m[v.v[ for all v e R "  

with v _1_ co*. 

Then there exists a positive ~* such that for every ~ < e* the following 
statement holds true: there is a positive 0* such that for every 0 < O* there 
is an analytic canonical transformation mapping (J, ~)EB~,(0)xT" to 
(p, q)e Ba(p*) x T" with the following properties: 

(i) J = 0  is an invariant torus carrying a quasiperiodic flow with 
frequencies co*. 
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(ii) The domain De(0 ) contains an infinity ofinvariant tori the relative 
volume of which tends to 1 as O ~ 0 ,  being estimated by 1 - e x p ( - 1 / O ) ;  
the structure of these invariant tori is close to that of the tori J =  const, in 
the sense that every invariant torus lies in a neighborhood of some torus 
J =  const, the radius of the neighborhood being estimated by e x p [ - ( 1 / 0 ) ] .  

(iii) For every initial datum Jo~Bo(O) one has that I J ( t ) - Jo l  is 
estimated by exp[-(0*/co) 1/(~+ l~] for It[ ~< T, where 

T~- exp[exp(#*/#) 1/~+ l~] 

Let us add a comment concerning the local quasiconvexity hypothesis 
(c). We use this hypothesis in connection with Nekhoroshev's theorem. It 
should be remarked that the original formulation of Nekhoroshev requires 
the less stringent condition of steepness, which, however, is more difficult 
to handle. Later formulations of the theorem make use of the easier condi- 
tion of convexity, i.e., IX(p) v. ol > my.  v for all p ~ ff and for all v ~ R". 
However, as remarked by Nekhoroshev himself, it is enough to require that 
the latter inequality holds for all o A_ o)(p). This is the so-called condition 
of quasiconvexity. The fact that we restrict our attention to the neighbor- 
hood of the invariant torus p* allows us to further relax the quasiconvexity 
condition to the form (c). 

2. S C H E M E  OF T H E  P R O O F  

The proof of our theorem relies on a composition of known results, 
namely of KAM theorem ~9~ and Nekhoroshev's theorem, ~4'~5) both in a 
local and a global formulation. More precisely, we need two preliminary 
steps in order to prove the statement (i), and two independent steps in 
order to prove the statements (ii) and (iii), respectively. The first step 
reduces the Hamiltonian to Kolmogorov's normal form, thus ensuring the 
existence of an invariant torus (the head torus). The second step is the 
construction of a Birkhoff normal form up to a finite order in the neighbor- 
hood of the head torus, with exponential estimates of Nekhoroshev type. 
The mapping (J, ~b) --* (p, q) referred to in the statement of the theorem is 
actually the composition of the mapping leading to Kolmogorov's normal 
form and of that leading to Birkhoff's normal form. The third step is the 
application of KAM theorem in the global version due to Arnold. ~) The 
fourth and last step is the application of Nekhoroshev's theorem. We 
perform the four steps above in separate subsections. We omit all the unne- 
cessary technical details, making direct use of the known theorems in some 
available form, without attempting to find optimal estimates. 
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2.1. Use of Kolmogorov's Normal Form 

We follow the formulation of Kolmogorov's theorem provided in ref. 3. 
The hypotheses (a) and (b) allow us to apply the theorem. Accordingly, 
there exists a positive e* such that for every e < e* there exists a positive 
6 '<  6 and an analytic canonical transformation (p', q ' ) ~  (p, q) mapping 
Do,(0) into D,~(p*) which gives the Hamiltonian the Kolmogorov normal 
form 

H ' ( p ' , q ' ) = Z  * . . . . .  co, p, + �89 ~,, Co.Pi 19) + f ( p  , q') 
i i , j  

(4) 

with f at least quadratic in p'. In particular, the real matrix C~ satisfies the 
conditions (b) and (c) with new constants m ' <  m and d ' <  d, while the 
quadratic part o f f  has zero average over the angles q'. 

2.2. Use of the Local Formulat ion of Nekhoroshev's Theorem 

We expand now the perturbation f in (4) in power series about the 
origin (i.e., the invariant torus). We write the Hamiltonian as 

H ( p ' , q ' ) = ~  * ' co~ Pi + Hz(P , q') + H3(P', q') + "'" 
i 

(5) 

where Hs(p', q') is for s/> 2 a homogeneous polynomial of degree s in p'. 
As f is analytic in Dx (0), the expansion is convergent, and the norm of Hs 
decreases at least geometrically with s, being of order 6 's. Remark that the 
Hamiltonian (5) resembles that of a system of perturbed harmonic 
oscillators, as considered, for instance, in ref. 8. Thus, we can apply the 
local formulation of Nekhoroshev's theorem. To this end, as usual, we 
perform a Birkhoff normalization up to some finite order r, thus giving the 
Hamiltonian the form 

H(J, ~h ) = ~ co*J, + Z (~)(J) + ~(')(J, tp) (6) 
i 

which is analytic in Do(0 ) for some positive 0 < 5', depending on r. Here, 
ztr)(J) is the n6rmalized part of the new Hamiltonian, while ~tr)(j, q;) is 
the still nonnormalized remainder. In particular the quadratic part of Z or) 
is nothing but (1/2)Zi. j  C~JiJj, i.e., it coincides with the average quadratic 
part of the Kolmogorov normal form (4). Thus, the validity of the condi- 
tions (b) and (c) is preserved by the Birkhoff normalization procedure. 

Standard estimates (see, for instance, refs. 5, 7, 8, and 17) allow us to 
prove that in Do(0 ) the size of the remainder is of order ( r !y  +~ 0 r. An 
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optimal choice of r as a function of Q, i.e., r"-(1/Q) ~/r allows one to 
prove that there exists a positive ~ such that for Q < ~ one has 

I .~ + l', < A l f l exp [-- (~) '/'~ + ')] (7) 

with a constant A depending on the number n of degrees of freedom. 

2.3. Use of Arnold 's  Formulat ion of  K A M  Theorem 

We rewrite the Hamiltonian (6) in the form H(J,~,)=Ho(J)+ 
Hi(J, ~), where 

Ho(S) = ~ oJ*J,+ZIr~(J), H,(J, ~b)= ~r)(J, ~) (8) 
i 

To this Hamiltonian we apply the statement of the main theorem in ref. 1. 
The analyticity hypothesis is clearly satisfied, as well as the condition 
IH~I < M for some M. Indeed, in view of the result of the previous section, 
the remainder ,~trl(p, q) is an analytic function in a domain D~ for some 
positive Q, and is bounded there by A r f l  exp[--(Q/Q)t/l~+l~]. We stress 
that, choosing Q small enough, the size of H~ can be made arbitrarily small, 
exponentially with 1/Q. Concerning the nondegeneracy condition 

632Ho 
det Icg'(J)l 4:0, with c~=OjiOjj 

which must hold for all J in the domain where the theorem is applied, we 
remark that it holds in some neighborhood of the torus J - - 0 .  Indeed, it 
holds for J = 0 ,  since one clearly has i f ' ( 0 )=  C~, where C~. is just the 
matrix appearing in (4), and so, by continuity, it holds in a neighborhood 
of J - - 0 .  Thus, a straightforward application of Arnold's theorem shows 
that there exists a positive Q~ < ~ such that for Q < Ql the relative volume 
of the KAM tori in the neighborhood of J =  0 is large, and tends to 1 as 
Q ~ 0. According to Neishtadt, ~13~ the volume of the complement of the set 
of invariant tori is estimated by x/~, where e is the size of the perturbation. 
In our case we replace e by exp( - I /Q) .  This proves the statement (ii). 

2.4. Use of Nekhoroshev's  Theorem 

As in the last section, we rewrite the Hamiltonian as H(J, ~O)= 
Ho(J)+ Ht(J, I~), with H o and Ht given by (8). We use the formulation of 
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Nekhoroshev's theorem given in ref. 4. Again, the analyticity and non- 
degeneracy conditions are satisfied, as was already remarked. The condi- 
tion on the smallness of the perturbation is satisfied, too, due to the 
exponential decrease of the remainder. Instead of the convexity condition 
required in ref. 4, 

[Ic~'(J) v.vll~mv.v for all v~R"  (9) 

we use the quasiconvexity, i.e., we add the condition v _1_ og(p) as remarked 
in the introduction. In view of the hypothesis (c), such a condition is clearly 
satisfied in some neighborhood of J = 0 .  Thus, we apply Nekhoroshev's 
theorem, according to which, denoting by e the size of the perturbation, 
for e smaller than a positive g one has 

IJ(t)-J(O)l<~e '/c for I t l < ~ - e )  exp (10) 

with constants ~ ,  J - ,  and c ~ n 2. (We stress that the estimates are not 
optimal: for better estimates see, for instance, refs. 11 and 17.) In our case 
the size of the perturbation is c = A  I f l  e x p [ - ( 0 / Q )  t/l~+ t~]. We conclude 
that there exists a positive Q2 such that for every 0 < Oz the upper bound 
to the diffusion time is of order exp[exp(0JO)] ,  as claimed. This proves the 
statement (ii). The constant Q* in the statement of the theorem should 
be identified with the minimum between Ql and Q2. Concerning the 
dependence of 0* on e, we stress that it does not tend to zero with e, as one 
can easily check using the explicit estimates for the constants given in the 
quoted papers. 

3. D I S C U S S I O N  

We discuss here some points that we consider relevant for interpreta- 
tion and use of our result. We discuss in particular three points. ( i)The 
possible optimality of our estimate and the relation with some recent 
results of Chierchia and Gallavotti t6~ on the existence of diffusion. (i i)The 
possible interpretation of the known phenomenon of the existence of a 
quite sharp threshold separating order from chaos in nearly integrable 
systems. (iii)The applicability of the same approach to different situations, 
for instance, the case of an elliptic equilibrium. 

Concerning the first point, namely the optimality of the results, a 
remark is in order. It is known that Nekhoroshev's theorem is in essentially 
optimal, tm~j Thus, the following question naturally comes to mind: the 
Nekhoroshev procedure has been already used in Section 2.2; how can we 
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go further in optimization using again the Nekhoroshev approach (as is 
done in Section 2.4)? 

To clarify this point, let us consider again the Hamiltonian (1). It is 
known that the existence of resonances actually causes a change of the 
actions (in resonant zones) with speed of order e. Nekhoroshev's theory, in 
its most general formulation, states essentially that the main effect of the 
perturbations reduces to an oscillation along a direction of fast drift, just 
due to the resonance. Such an oscillation is necessarily bounded as far as 
the resonant zones do not overlap: actually, the strongest condition in the 
so-called geometric part of Nekhoroshev's theorem is precisely the non- 
overlapping of resonances. Superimposed on the oscillation there could be 
a very slow diffusion, but the diffusion speed is exponentially slow with the 
inverse of the perturbation. In brief, a perturbation of order e causes an 
oscillation of order, e.g., e 1/2, but a diffusion of order e x p ( -  l/e) only. 

Let us now come back to our problem. The procedure leading to 
Birkhoff's normal form is successful up to a certain finite order because the 
Diophantine condition on the frequencies ensures that in the neighborhood 
of the torus there are no resonances of low order. This can be understood 
on the basis of the following heuristic argument. An elementary estimate 
shows that inside a ball of radius 0 there are no resonances of order 
lower than 0-1/t~+ ~ On the other hand, due to the analyticity of the 
Hamiltonian, the coefficient of a resonance of order s is of order e x p ( - s ) .  
Thus, in a ball of radius 0, Birkhoff's procedure stops when one encounters 
a resonance of order Q-~/t~+~, causing a perturbation of order 
exp(-0-~/t~+~)). This is indeed the exponential remainder given by the 
local Nekhoroshev estimate in the neighborhood of radius 0 of the torus. 

At this point comes the new idea that we introduce in the present 
work: we apply the geometric part of Nekhoroshev's theorem to the neigh- 
borhood of the torus. This is justified by the following standard argument. 
It is known that the number of resonances of order s increases as s", where 
n is the number of degrees of freedom; on the other hand, the size of a 
resonant region is of order e x p ( - s ) ,  being essentially controlled by the 
coefficient of the resonant term. Thus, approaching the torus, resonances 
do accumulate geometrically with their order, but each of them controls a 
region of an exponentially small volume. One thus concludes that the total 
relative volume of the resonant regions is small, which precludes over- 
lapping. This fact, on the one hand, leaves enough space free from reso- 
nances to allow for the existence of a set of invariant tori of large relative 
measure. On the other hand, the general conclusion of Nekhoroshev's 
theorem that a perturbation of order e causes a diffusion at most of order 
e x p ( - 1 / e )  applies here, too. The superexponential estimate in this case 
follows from e -~ exp( - 1/0). 
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We stress that the superexponential estimate cannot be directly 
obtained from Kolmogorov's normal form without the Birkhoff normal- 
ization of the second step. Heuristically, this can be justified as follows. 
Nekhoroshev's theory, including the geometric part, is developed always 
making reference to the unperturbed action variables. The main contri- 
bution to the change in time of such quantities is due to the so-called 
deformation, which in the case of Kolmogorov's normal form is estimated 
by some power of Q. On the other hand, when the distance Q from the 
invariant torus decreases to zero, a deformation bounded only by a power 
of Q would forbid a consistent construction of the geography of resonances, 
as required by the geometric part of Nekhoroshev's theorem. The good 
action variables introduced by Birkhoff's normalization procedure allow us 
to overcome this difficulty. 

The natural question now is: can we consider our new result optimal? 
We believe that the answer is yes. Indeed, the recent paper by Chierchia 
and Gallavotti, 16~ although not applicable to our case in a straightforward 
manner, suggests that a resonance of multiplicity one and size e gives 
macroscopic diffusion along the resonance line in a time proportional to 
exp(1/e). Since in the vicinity of a KAM torus the size of the strongest 
resonances is e x p ( -  l/Q), one has to expect that diffusion, if any, actually 
requires a time of order expl-exp(1/Q)]. 

We come now to the point (ii), namely the problem of the existence 
of thresholds for transition from order to chaos. Here, our argument is 
completely heuristic. The classical exponential bound, as given by local 
Nekhoroshev-like results, suggests that diffusion takes place in a rather 
smooth way, although quite rapidly, when the perturbation parameter is 
increased. Conversely, the numerical simulations show that diffusion takes 
place in a very sharp fashion, hardly compatible with the Nekhoroshev 
exponential. It has been understood by Chirikov that this is caused by a 
transition from resonance nonoverlapping to resonance overlapping, which 
completely changes the structure of orbits in phase space and activates 
different mechanisms of chaotic diffusion. Here we understand that the 
diffusion speed in a nonoverlapping regime is much slower even than the 
Nekhoroshev exponential, thus making the transition really sharp. 

Concerning the point (iii), we discuss on the one hand the application 
to the case of a'n elliptic equilibrium and, on the other hand, a possible 
extension to our previous work. ~12~ 

We first consider the case of an elliptic equilibrium point with the fre- 
quencies of the harmonic part of the Hamiltonian satisfying a Diophantine 
condition (2). The main remark is that such an equilibrium is nothing 
but a degenerate invariant torus. Thus, one can follow the same steps as 
above, just skipping the construction of Kolmogorov's normal form. The 
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application of Arnold's theorem then leads to the existence of a set of 
invariant tori, the relative volume of which tends to 1 as 1 - e x p ( - 1 / O )  in 
the limit 0 ~ 0  (0 being in this case the distance from the equilibrium 
point); this improves a little, from a quantitative viewpoint, the statement 
in ref. 2, Appendix 8. The application of Nekhoroshev's theorem is instead 
new: if the convexity condition (c) of the theorem is satisfied, then one 
obtains a superexponential estimate of the diffusion time instead of the 
usual exponential one. 

We come now to our previous result in ref. 12. We considered there a 
Hamiltonian of the form (1) and proved that the diffusion speed can be 
made arbitrarily small provided one starts close enough to an invariant 
torus. However, we could not recover a superexponential estimate because 
we did not actually use in a complete fashion the power of the geometric 
part of Nekhoroshev's theorem. A straightforward application of this idea 
leads to a quantitative reformulation of that result, stating that for e suf- 
ficiently small there exists a domain, D~ say, which contains open balls of 
radius e, characterized by a diffusion speed of order exp[-exp(1/E)] .  The 
domain D, can be identified with the nonresonant region of the geometric 
construction by Nekhoroshev. 
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